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Abstract

An architecture for the operation of industria
processes is presented in this paper. It is based on
an expert controller whose main functions are
process optimisation and fault detection. Only
process optimisation is detailed here. The operation
gystem has two main sub-systems: a Multiobjective
Optimisation System, based on genetic agorithms,
and a Learning System, based on fuzzy rules, which
are both described. A glass furnace application is
described as a case study, including some results
with real data.

1 Introduction

There are two magor difficulties in automatic
process operation, and these are generaly
interrelated. One is due to the multiplicity of criteria
when it comes to its performance optimisation.
Another depends on the absence or complexity of
process models. Multiple criteria, or objectives,
some of them concurrent, may be transformed into
asingle one, by means of an aggregate function [4].
Complex problems generally present multiple
parameters as arguments so, e. g., the hill-climbing
method [2] may be used to find optimal solutions.
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However, aggregate functions may not exist, due to
incompatibilities in the nature of the objectives, and
the latter method does not make a distinction
between local and global optima. The approach
used in this paper to solve the multiobjective
optimisation problem is based on genetic algorithms
(GAS) [5]. GAs perform parallel search, so the local
and globa optima distinction problem is reduced.
Together with the preferability relation [4] the
difference on the nature of the objectives is
overcome. The need to employ process models, in
order to evaluate different furnace operation points,
involves knowledge acquisition on the most relevant
process features. Since these models are, in most
cases, unavailable, one possible solution is to learn
them from real data. Severa learning methods are
described that make use of Neural Networks (NNs)
[9]. NNs generalisation ability depends on the
network structure and, in order to interpolate a
genera function, the number of units in each layer
may grow exponentially. Learning systems based on
Fuzzy Logic are able to emulate human knowledge
and to deal with uncertainty. Under certain non-
restrictive  conditions they are  universa
interpolators [11].

All these concepts were integrated in an industria
process operation system, which was applied to a
glass furnace. The major contributions of this paper
are the description of a general hierarchical
architecture for the operation of industrial
processes, the development of an expert controller



for glass furnaces, and the formalisation of a model
learning methodology for a glass furnace. The paper
is organised as follows: in Section 2 the architecture
of the industrial process operation system is
described; the agorithms used are detailed in
Section 3; in Section 4, the case study (the
operation of a glass furnace) is introduced, and
finaly, in Section 5, the experimental results are
presented. Conclusions are drawn in Section 6.

2 An Architecture for the Operation of
Industrial Processes

The architecture proposed for the operation of
industrial  processes is based on a hierarchica
scheme, whose levels are denominated as
Operation Goals, Organisation/Coordination,
Execution and Analysis. In the next sections those
levels will be briefly explained.

2.1 Operation Goals

Operation goals may be seen as the principles that
guide process operators, most of the time translated
in statements such as “maximise fina product
quality” or “minimise energy costs’. The
achievement of a goal may be seen as the resolution
of an optimisation problem, or, equivalently, as the
minimisation of a cost function f. Severa goals may
lead to the presence of concurrent solutions, where
the improvement in one objective will give rise to
the degradation in another. This justifies the need
of multiobjective optimisation techniques for the
attainment of trade-off solutions.

2.2 Organisation/Coor dination

This level generates process set points and
parameters (e. ¢., furnace temperature, valve
opening in a gas duct, geometric parameters in
vison control systems) from the operation goals.
On the other hand, it is aso responsible for
checking the process safeguard. It is composed of
an expert controller split into a process
multiobjective optimisation system and a fault
detection system. This paper will concentrate only
in process optimisation. The information flow

between the different levels of the operation system
is represented in Figure 1.

Process M ultiobj ective Optimisation System

This system receives as inputs the operation goals
and generates process set points and parameters.
The anaysis block carries out the feedback of its
actions. Set-point generation corresponds to the
resolution of a multiobjective optimisation problem.

Fault Detection System

Due to external causes, equipment malfunctioning
or human errors, process performance may be
degraded or get over safety limits. In industrial
processes, the automatic detection, diagnosis and
identification of faults may be a crucia factor for
the adequate response of operation systems.
However, thisis not under the scope of this paper.
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Figure 1: Information flow between different levels
of the operation system

2.3 Execution

The Execution level is composed of the sub-systems
through which operators act on the process. These



are the control loops or directly the actuators.
Control loops are generdly implemented using
programmable logic controllers (PLC’s) or process
controllers.

2.4 Analysis

The anaysis block is responsible for closing the
information loop with the expert controller of the
organisation/coordination level. It includes al the
existing models of the process. The main difficulties
in the automatic control and operation of industrial
processes are due to erors in process
parameterisations and variables measurements,
coupling of manipulated variables, presence of non
linearities and time constants of different orders of
magnitude. It is natural to expect the absence of
analytical models, or, if these exist, to expect them
to be so complex that they are of no practical use.
This motivates the need to endow the analysis block
with a learning system, in order to build process
models iteratively from actual data.

3 Methodsand Algorithms
with

31 Multiobjective  Optimisation
Restrictions Based on Genetic Algorithms

An agorithm that solves the multiobjective
optimisation problem, using Gas, is introduced in
this section. This algorithm is based on the MOGA
(Multiobjective Genetic Algorithm) [4].

Par eto Formalism

The approach used is based on the Pareto
formalism, which relates objective vectors, such as:

£ = (f,(x), f,(<)..... £ (x))
where x is adecision vector in the universe W™

X = (X, %0000 X, )

1 N\m

Without loss of generality, it will be assumed that
the multiobjective optimisation problem  will
correspond to the minimisation of the function f, i.
e., the minimisation of each of its components. It is
now possible to state Pareto definitions:

Definition 1: Pareto Dominance A vector f°
dominates another vector f iff f is partialy
smalerthan f ', i. e.:

i fa. mpbf £F USIT {1, mbif] <,
and thisisdenoted by f p <f .

Definition 2: Pareto Optimality The solution
vector x 1 W" is optima-Pareto iff there is no
other solution x , such that:

£ =f(x)p<f =f(x)
The set of optimal-Pareto solutions is named non-
dominated or non-inferior set. In real problems, a

set of solutions, rather than a single solution, exists,
defining the so-called trade-off surface.

Restrictions,
Vector

Priorities and the Preference

Restrictions may appear at two different levels: in
decision vectors, where they can be easily satisfied,
or a the level of objective functions. For N
objectives, they can be defined as:

F() =(f.0). £, (x)..... fu (X)) £ (B b, )
meaning f (x)£h,i=1..N, where h is the
restriction value for objective f,. If an objective is

unrestricted then it is possibleto set h to - ¥ .In

the process industry, some objectives normally
present different priority levels, e. g., quality or
ambient concerns may be disregarded by the need to
fulfil a great number of orders. In the present case,
restrictions in objective functions will be seen as
high priority goals [4], or “hard objectives’, while
the unrestricted objectives, or “soft objectives’, will
have lower priority.

It is now possible to define the preference vector as:

9=(9,.9,)

The component g, corresponds to the soft
objectives, while g, corresponds to the hard ones.

Each of these components relates priorities with
godsin the objectives and is defined as follows:

g :(gi,ligi,Z!"'!gi,ni )’i =12



suchthat n, +n, = N . Findly, g isdefined as:

g:(gl!gz):((- ¥"¥’---a'¥)a(gz,1a92,21---’gz,n2»

where g,; is equa to the restriction value of the i-

th objective that presents restrictions. An objective
vector u, for a particular solution x,, may be

rewritten as u=f(x,)=(u,,u,). For the sake of

smplicity, it is assumed that the order of the
elementary components of u is interchangeable.

Application of Genetic Algorithms

A detailed description of GAs can be found in [5].
In this paper, the individuals are formed by the
concatenation of the arguments of the optimisation
problem, x =(x,,X,,...,x.). The genetic operators
used are selection/reproduction,  crossover,
mutation and an elitism strategy. The evolution of
the populations is guided by a fitness function that
works on the individuals rank in a population. This
is defined by the preferability relation [4], which
plays a mgor role in the optimisation agorithm.
Niche formation techniques are aso considered,
namely fitness sharing and mate restrictions.

3.2  Automatic Learning by Examples Based
on Fuzzy Rules

The agorithm presented in this section builds
process models from real examples. These are
composed of data sets of inputs and desired output,
(x¢,xg...,x¢| y9. The algorithm used is based on

the learning by clusters algorithm [1].
I ntroduction

The models are based on IF-THEN rules whose
syntax is.

RO IFEN % is AVSTHEN y=w®)
i=1 2 consequent part

antecedent part

where R" is the I-th rule from ¢ possible ones; x

is the i-th fuzzy variable from the n that compose
the antecedent part, defined in some universe of

discourse (UoD); A" is the linguistic term defined
by the fuzzy set assigned to variable x in the I-th

rule, and characterised by the membership function
m,,(%); y is the model output; w') is a numeric

value, learned from data over time.

All the membership functions used are Gaussian and
uniformly distributed over the UoD. The inference
mechanism applied is the centroid method [1,11].

Algorithm

The recursive verson of the algorithm in [1] is
summarised in the sequel. First of all, the original
agorithm initialises the rules. When a new example
(x¢,x&...,x¢| yd is obtained:

1. Startinthefirstrule | = 1

2. Evauate the membership degree of al input
variables in the linguistic terms that build rule I,

mAm(x,ﬂI),i =1...,n.
3. Evauate the membership degree of the new

g
examplein rulel: S10) - OmA@)(x,ﬂ:)
i=1

4. Weight the output with S1): s20) & s10) ye

)

5. With w('):(Num(l)/Den(l)), where Num"  and

Den(l) were obtained in the last iteration, make the
updates:

Num®) = Num(®) + s20)

Den(') - Den(') + Sl(l)

0]
wl) 5 Num%)en(')

6. Proceedintothenextrule, | = | +1
7. Gotostep 2.

4 Case Study: Operation of a Glass
Furnace

The process operation architecture introduced
before was applied to a rea furnace, under the
project NOVOVIDRO [6]. The glass furnace built
under NOVOVIDRO is of the recuperative type,
cross-fired, with a pull of about 1lton/day, and
works with natural gas. It has two recuperators, and
two firing zones in the melting chamber.



4.1 Process

The glass production process can be briefly
summarised as follows [10]: the selected raw
materials are mixed and introduced in the glass
furnace. After their melting, the resulting glass is
gathered and worked. Findly, it is cooled in a
controlled way, so that it can be finished.

4.2 Operation System

It is now possible to design an operation system for
the glass furnace, which is depicted in Figure 2.
This system is detailed in the sequdl.

Operation Goals

In the glass industry, five criteria can be defined to
optimise the performance of furnace operation
[3,8]:

o Glass quality maximisation;
o Thermd efficiency maximisation;

o Furnace and refractory lifetime
maximisation;

o Pollutant  production and  emission
minimisation,;

o Energy consumption cost minimisation.
Cost functions are defined to quantify these goals.

Glass quality maximisation Glass quality is
guantified by the amount of defects in the glass.
These may be of three types:. blister, stone and cord
[7]. The cost functions are defined as:

f,(x)° Dy(x). f,(x)° Dy(x), fy(x)° Dc(x)

where Dg, Ds and D¢ are, respectively, the glass
percentage of blister, stone and cord, and x is the
vector that characterises the furnace operation
point, to be described later. Defining the maximum
admissible amount of defects as gs, gs and gc, these
values will act as restrictions to these objectives.

Thermal _efficiency maximisation There are
models for furnace efficiency, depending on the
flows of gas and air used in combustion, ¢, and

4, which are related by a constant, K, . Theless
the temperature required by the glass, the more

efficient will be the heat transfer, and the less fue
will be required [8]. Therefore:

f,(x)° ds

Furnace and refractory lifetime maximisation
This godl is achieved ensuring the correct balance of
the pressure, glass level and temperature control
loops, provided with correct set points [10]. No
additional objective function is needed.

Furnace
Glass | Thermal and

quality |efficiency, refractory
maxim.| maxim. lifetime

maxim.

P0||utant Energy
production| consumpt.
and cost
EMISSON |mijnimisat.

minim.

Organis./Coord.
Expert
controller

Pressure| Glass || Air-to- [[Temperatur
loop |{level loop|| gasratio loop

Process

Figure 2: Glass furnace operation system
hierarchical architecture

Pollutant production and emission minimisation
At the furnace level, the main pollutant is NOx,
which is directly related with flames temperature.
Cost functions are:

fs()° T fox)° T,

Energy consumption cost minimisation Defining
a as the natural gas tariff, another cost function
would be a.q;. However, this is the same as f,,

scaled by a constant factor.

The vector x has the following components:

x © N , batch recipe number
Xy © P , furnacedraft |kg hl

X3 © Treey » FECUpErator Loutput air temp.[°C]



Xg © Tree2 , recuperator 2 output air temp.[°C]

X5 © Terown , furnacecrown temperature[°C]

X6 ° Torear , furnace bottom temp. (rear) [°C]

X7 © Taeront , furnacebottom temp. (front) °C]

Xg ° G , combustion gasflow ’m3h'1

X9 © Ty , zoneltemperature[°C]

X0 ° To , zone 2 temperature[°C]

The  restriction  vector is defined as

(gB!gs!gca'¥,'¥,'¥).
Organisation/Coordination

This level generates firing zones temperature set
points, as the result of the Process Multiobjective
Optimisation System (PMOS). An empirical
analysis of the process led to the definition of the
following furnace models, according to the x
components [8]:
X3 =My (%) = Meeca (%1, %2, X, X10)
X4 =My, (X) = Mpeco (Xl! X2, X9, XlO)
(X): mCrown(Xl!XZ!Xs!X4!X9!X10)

):mBRear (Xl,Xz,X3,X4,X5,X9,X10)

X7 =m,, (X) = Mppront (Xl! X2, X31 Xq, X5, XG!XQ!XIO)

Xg =My, (%) = Maas (%4 X2 X5 X4 X6 Xg1 X10)
The following relations were also considered, as
explained before:

f; =Dg = f1(X1, X5, Xg, X4, X5 X6, X7, Xg, Xg, Xy9)

f, =Dg = fz(Xl,Xz,Xs,Xme,Xe,XwXs,Xg,Xlo)

f3 =D = f5(X0, Xp, X3, Xq1 X5, X5 X7, Xg, X9 Xg0)

fs=0c =%

fs =T, =Xg

fe =Tz = X0

It is assumed that control loops are able to achieve

the imposed set points. The PMOS must solve the
following multiobjective optimisation problem:

Compute x;, and X,  such

f(x) = (£.0c). £2(x). £3(x). £, (x), £5(x). fo(x)),
subject to the furnace models and to the restriction
vector (gg, Js,Jc - ¥ - ¥ ,-¥), is minimised.

that

Application of the multiobjective optimisation
algorithm The PMOS receives as inputs the actual
process parameters, (x§x$), the process models,

rnRecl’ rnRecZ’ rT‘hrown’ rnBRear’ rnBFront’ nhas’ the
cost function vector, f(x), and the restriction vector

(Ugr 95, 0c.- ¥ - ¥,-¥), which, as seen before, is
converted in an equivalent preference vector given
by ((-¥.,-¥.,-¥)(gs.9s.9c)). The PMOS output
is the solution vector (xgxlo) i.e., the temperature
set points. At each stage of the genetic algorithm a
population of candidate solutions is generated. A
generic solution, denoted by (x§,x§), is evaluated
according to the values of x¢ and x¢ and follows
the steps:
1. Evaluate recuperators temperatures,
X3 = Mpey (XF', xg, x§, XfB)
X4 = Mgy (XF, g, X§, Xﬁ))
. Estimate crown temperature,
X5 = My oun (X5 X, %5, X4, X8, )
3. Estimate bottom rear temperature,
X = Mepeer (X X8, X3, g X5, X8, 6
4. Estimate bottom front temperature,
X7 = Mggron (X85 X8, %3 %4, K5, %o, X6, X )
5. Estimate natural gas flow,
g = Mo (465 X, 5,54, 5., 56, )

. Evaluate solution through the computation of the cost
functions,

N

2]

The agorithm generaly provides a set of non-
dominated solutions. The selection of one particular
solution is based on the fact that stable operation is
a requisite for quality glass production. Then, the
picked solution is the one closest to the current one,
in an Euclidean sense, for smoothness of operation.

Analysis

This level has two tasks, namely, to supply
production data for optimisation purposes, and to
build and update process models. The Learning
System carries out the latter.



Data for optimisation The data that the
optimisation system needs is the batch composition
number and the furnace expected average glass
draft. The amount of glass expected to be produced
in one day is given by:

NDay
QDay a n pl (1)
where n. is the amount of type i products to be
produced, N, isthe number of different products,
and p, is the average weight of type i products.

The expected average glass draft is:

= QDay
Py~ pT

Day

(2)

Day

where DT, isthe duration of furnace labouring.

Day

Learning System This system builds and updates
furna:e mOdeIS, namdy, rn?ecl, rn?ecz, rnCrown, rnSRean
Merront, Meas, @nd cost functions f;, f, and f;. The
examples received by the system consist of data
vectors, Yy°, relative to pre-defined production
periods (one shift or half shift). The components of
y® are the batch composition number, N, the

estimated average furnace draft, P , the recuperator
1 and recuperator 2 average output air
temperatures, T, and T.,, the furnace average

crown temperature, T,

Crown ?

the furnace average rear

and front bottom temperature, T, and T o

the combustion average gas flow, ¢, the zone 1

and zone 2 average temperatures, T, and T,, and
the estimated percentage of blister, stone and cord,
namely D,, Dg and D, . For each model, only the

corresponding components of y° will be used. Rea
data coming form the furnace is first low pass
filtered, and then its mean value and standard
deviation are taken. The mean value is used as an
example if the standard deviation is lower than a
defined threshold. The values that need to be
estimated are the following:

- Shift average furnace draft, 5:

N51ift

R ol anp
5 — QShlft — _i=l (3)
DTShift DTShift

where Ng,; is the number of different shift
products and DTy, is the shift duration.

- Percentage of glass defects, D, Dq and Dy

rNB

o anp,
D, = =200 =% X100  (4)
QShlft QShift
where r,,I =1...N;, are the different products

that were marked with blister defect, in the end
of the production process. These values are
supplied, a the end of each shift, by an
information system. The other estimates are
processed in the same way.

4.3 Information Integration

The operation system receives furnace variables
through a process monitoring integrated system,
based on SCADA software (supervisory control and
data acquisition) Omron SCS-Sysmac V2.0 that
interfaces with a programmable logic controllers
network. The information related with the fina
product (amount of glass produced and glass
defects) is received through an information system

that monitors production.
1340

4IZ;IZI ISIZ;IZI SIZ;IZI
Samples _
Figure 3: Evolution of Tgrear, after over sampling

1 00 1000

5 Experimental Results

The furnace was monitored from 26 May to 4 June
2000. Since the sample period used was 1h, the
origina signals were linearly over sampled and
corrupted with noise, in order to simulate a sample
period of 15min, more adequate (see Figure 3 for



Terear). The difficulties that a human operator would
have to find out the correlations between severa
process variables are evident from Figure 4.
However, some correlation seems to exist between
Teromn @d Ty, By the time this work was carried
out, the production information system was not
fully working. Due to this fact, and in order to test
the operation system, some vaues had to be
artificially assigned, namely, the amount of glass
produced, Qr, and the amount of glass with defects,
Qs, Qs and Qc. The first one is randomly generated,
taking into account a production between 400 and
1300 kg in each shift. The estimate of the average
draft, P, is then taken dividing this value by the shift
duration, DTg,; .

130

1340

1236 4

X
=

1332

g
<4
&
= 1228 -|

Natural gas flow

=
=

1324

o0 T T 1320

1475 1485 1495 1505 1465 1475 1485 1495
TCrown T2

1503 305

1500

1405 4

1490

1]3ran

1425 o

1420 4=

1475 ' | 245 : | |
1420 1440 1460 90 100 110 120 130
Natural gas flow

Figure 4: Varlabla used to build examples

The amount of glass with the three distinct defects
is generated according to:

In (0 ml)% T]mln +-I-]max +2
2

o] DT 5
Qg = 10><; Frin 9, 1056 7% 7+
g ©)
+10 agzm'" T2 40
DT, p
Qs= 158 Dzm'” °+10>§ %BT +1—
e a 1 (6)
+10>G 2~ 2 492
DT, 2
. 5 a, -T, 6
Q= 10>€M+19+10W+1j+
e DP 2 DTy 17} (7)
+5 2I‘I'IIFI - 2 +1g
DT, 2

These simple models, represented in Figure 5 for P
= 414 kg h, establish some basic relations, as the
increase in the amount of blister with glass draft, or
its decrease with zone two temperature. The
estimate of blister percentage, for instance, is then
taken dividing Qg by the DTg,; .

5.1 Furnace Models L earning

The UoDs of the different variables are indicated in
Table 1. The thresholds used to validate examples,
determined by signal observation, are indicated in

the same table.
Blister

Stone

]

20

1471 1500

1500 g 1471
) B 1460

T, 140

1470 W 430

Figure 5: Artificial models of glass defects, for a
draft P = 414 kg h™*

variapte | SRR unit | (e
P 0 473 | Kgh' 3
TRect 245 305 °C 55
Trec 230 | 325 °C 55

Toom | 1475 | 1505 | °C 3
Torear 1300 | 1340 | °C 2
Tero | 1320 | 1340 | °C 2

Uo % 130 | m*h* 25
Ty 1420 | 1470 | °C 35
T 1465 | 1500 | °C 35

Table 1: Universes of Discourse

The number of membership functions is empirically
determined according to the variation coefficient
(ratio between standard deviation and mean value,



in percentage) of the available data. The smaller the
variation coefficient, the less membership functions
assigned to a variable. The dimension of each model
is defined by the product of the number of
membership functions of al the variables involved
times the number of batch compositions (the only
crisp variable defined).

From the 50 possible examples, only 16 were valid.
The modeds built by the learning by examples
algorithm are represented in Figure 6. It is clear that
some of the trends of the mathematical models were
captured. However, some discrepancies till exist,
especialy in the blister model. In fact, for T, small,
the model does not reflect the original one. Thisis
essentidly due to the small number of examples.
This method makes possible to get some physical
insight of the furnace behaviour under different
conditions, just by looking at the surfaces defined
by the learned models. See, e. g., the influence of
the firing zones temperature in the recuperator 2
temperature, under a certain draft (Figure 7).

. Variation N of .
Variable Coefficient Membe_rshlp

Functions
P 54.39 7
Trect 3.00 5
Trec2 4.25 5
Teromn 0.28 3
Terear 0.58 3
Tafront 0.31 3
qG 7.11 5
T, 0.55 3
T, 0.40 3

Table 2: Membership functions assignment

5.2 Furnace Performance Optimisation

With furnace models available, it is possible to
optimise furnace performance. This is done
whenever production planning is available. This
implicitly defines the amount of glass to be
produced, in a certain day, Qr. Once again, the
average draft will be the ratio of Qr by the total
furnace labour period.

Stone

1471 1500

P
1460

1450

1440

1430 T

1420

Figure 6: Learned models of glass defects, for a
draft P = 414 kg h™*

T, 1480
1470

0.
250
260
255 )

1500 .
1490 z 146D
1480

1470

1420

Figure 7: Learned model of recup. 2 temp., P = 414
kg ht

The experiences presented in Table 3 were
performed in order to test the multiobjective
optimisation algorithm, and determine furnace
temperature set points. The results obtained are
listed in Table 4. The different experiences were:

1. Optimise blister percentage in glass. The value of f; thus
expresses the minimum of this function.

2. Global optimisation of glass quality. The decrease in
stone and cord implied an increase in blister and in gas
consumption.

Same as before, but with stone restricted to 25%. Blister
and gas consumption were improved and stone
degraded.

4. Simultaneous optimisation of blister percentage and gas
consumption. The result is the same as 1.

5. Same as before, with the additional minimisation of T;.
Theincrease in f; and f, made possible the decrease in fs.

Global optimisation with restrictions in all the
objectives. Objectives fy, f3, fs and fs achieve goals, while
the others do not. This is justified by the fact that, most
plausibly, there is no solution for this problem.



Used Cost Functions Restrictions

f1 fz f3 f4 f5 fe f1 fz f3 f4 f5 fe

1] o

26|06 |0

3lojo|o 25

4l 6 o}

5] 6 0|0

6lO|O|O|O6|O|O) 20| 25| 15| 105 | 1450 | 1475

Table 3: Multiobjective optimisation problems

6 Conclusions

In this paper, an architecture for the operation
system of industrial processes, with application to a
glass furnace, is proposed. This architecture is
based on an expert controller with two main sub-
systems. process optimisation and fault detection.
This paper is only focused on process optimisation.
The experimental results presented are based on a
blending of real and artificial data. In spite of this
fact, and in the available data exiguity, the system is
able to capture the main trends and relations
between process variables, enabling a multiobjective
process optimisation agorithm to determine the
optimal set points. Future work will focus on the

improvement of the learning algorithms and the
development of the fault detection system.
Results
fy f, fa fa fs fe
(De) | (Ds) | (Do) | (¢s) | (T) | (T2
1| 113 | 296 | 159 | 97.6 | 1470 | 1465
2| 179 | 288 | 90 | 1154 | 1421 | 1500
3| 124 | 239 | 137 | 1047 | 1468 | 1500
4 | 113 | 296 | 159 | 97.6 | 1470 | 1465
5 | 123 | 284 | 152 | 1049 | 1450 | 1465
6 | 13.0 | 279 | 145 | 106.0 | 1449 | 1473
Table 4: Results of the algorithm runs
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